top of page


Insight from Wild Yeast Isolates into the Molecular Mechanisms of Lifespan Variation Mediated by Caloric Restriction

McLean S, Lee M, Liu W, Hameed R, Gujjala VA, Zhou X, Kaeberlein M, Kaya A. (2024)

bioRxiv 2024.03.17.585422; doi:

mTORC1 activation in presumed classical monocytes: Observed correlates with human size variation and neuropsychiatric disease.

Berner K, Oz N, Kaya A, Acharjee A, Berner J. (2024)

bioRxiv 2024.01.31.578140; doi: (Accepted for publication, Aging (Albany NY))


Common molecular signatures between coronavirus infection and Alzheimer’s disease reveal targets for drug development.

Abyedah M, Yadav V, Kaya A. (2023) J Alzheimers Dis. 2023, 1-17; doi:10.3233/JAD-230684

Evolutionary transcriptomics reveals longevity mostly driven by polygenic and indirect selection in mammals.

Weiqiang Liu, Pingfen Zhu, Meng Li, Zihao Li, Yang Yu, Gaoming Liu, Juan Du, Xiao Wang, Jing Yang, Ran Tian, Inge Seim, Alaattin Kaya, Mingzhou Li, Ming Li, Vadim N. Gladyshev, Xuming Zhou. EMBO J. (2023)



Evidence that conserved essential genes are enriched for pro-longevity factors.
Oz N, Vayndorf EM, Tsuchiya M, McLean S, Turcios-Hernandez L, Pitt JN, Blue BW, Muir M, Kiflezhgi MG, Tyshovskiy A, Mendenhall A, Kaeberlein M, Kaya A. (2022)
GeroScience (2022).

Rapamycin treatment during development extends life span and health span of male mice and Daphnia magna.

Shindyapina AV, Cho Y, Kaya A, Tyshkovskiy A, Castro JP, Gordevicius J, Poganik JR, Horvath S, Peshkin L, Gladyshev VN. (2022)  Sci Adv. ;8(37):eabo5482.  doi:10.1126/sciadv.abo5482

Evolution of natural lifespan variation and molecular strategies of extended lifespan.

Kaya A, Phua CZJ, Lee M, Wang L, Thshkovskiy A, Ma S, GerLiu W, Harrison B, Zhao X, Zhou X, Bammler TK,

Promislow D, Kaeberlein M, Gladyshev VN. (2021)

eLife 2021;10:e64860 DOI: 10.7554/eLife.64860


Beaver and naked mole rat genomes reveal common paths to longevity.

Zhou X, Fan G, Zhang Q, Qianhui D, Sanderford M, Kaya A, Tian X, Mikhalchenko A, Kumar S, Zhang Z, Gorbunova V, Seluanov A, Liu X, Gladyshev VN. (2020)

Cell Reports, 32 (4), 107949

Molecular signatures of aneuploidy-driven adaptive evolution.

Kaya A, Mariotti M, Tyshkovskiy A, Zhou X, Hulke LM, Ma S, Gerashchenko MV, Koren A, Gladyshev VN. (2019)

Nat Commun, 11, 588.



Sulfate assimilation regulates hydrogen sulfide production independently of lifespan and reactive oxygen species under methionine restriction.

Choi Kyung-Mi, Kim S, Kim SH, Lee HM, Kaya A, Bok-Hwan C, Yong KL, Tae-Sik P, Cheol-Koo L, Seong-il E, Lee BC (2019)

Aging, 11(12): 4254–4273.


Population genomics of finless porpoises reveal an incipient cetacean species adapted to freshwater.
Zhou X, Guang X, Sun D, Xu S, Li M, Seim I, Jie W, Yang L, Zhu Q, Xu J, Gao Q, Kaya A, Dou Q, Chen B, Ren W, Li S, Zhou K, Gladyshev VN, Nielsen R, Fang X, Yang G. (2018)
Nat Commun. 9, 1276

Cytochrome C peroxidase facilitates the beneficial use of H2O2 in prokaryotes.

Kaya A, Mariotti M, Gladyshev VN (2017)

Proc. Natl. Acad. Sci. USA, (33)8678-8680.

Age-associated damage contributes to aging and may modulate lifespan through diet.

Lee SG, Kaya A, Avanesov A, Gladyshev VN (2015)

Sci Adv. 2017 Feb 17;3(2):e1601833.

Methionine restriction and lifespan control.

Lee BC*, Kaya A*, Gladyshev VN (2015)

Ann. NY Acad. Sci. 1363, 116-124. (* Equal contribution)

Adaptive aneuploidy protects against thiol peroxidase deficiency by increasing respiration via key mitochondrial proteins.

Kaya A, Gerashchenko MV, Labarra J, Toledano M, Gladyshev VN (2015)

Proc. Natl. Acad. Sci. USA, 112, 10685-10690.

Defining Molecular Basis for Longevity Traits in Natural Yeast Isolates.

Kaya A, Ma S, Wasko B, Lee M, Kaeberlein M, Gladyshev VN (2015)

Npj Aging and Mech. of Disease, doi:10.1038/npjamd.2015.1.

Regulation of protein function by reversible methionine oxidation and the role of selenoprotein MsrB1.

Kaya A, Lee BC, Gladyshev VN (2015)

Antioxid Redox Signal. 23, 814-822.

Evidence that mutation accumulation does not cause aging in Saccharomyces cerevisiae.

Kaya A, Lobanov AV, Gladyshev VN (2015)

Aging Cell doi: 10.1111/acel.12290.

(selected as Editors’ choice on Science;

Thiol peroxidase deficiency leads to increased mutational load and decreased fitness in Saccharomyces cerevisiae.

Kaya A, Lobanov AV, Gerashchenko MV, Koren A, Fomenko DE, Gladyshev VN (2014)

Genetics 198, 905-917.

Characterization of a cDNA from Beta maritima that confers nickel tolerance in yeast.

Bozdag GO,, Koc A, Noll GA, Prüfer D, Karakaya HC (2014)

Gene, 538, 251-217.

Methionine restriction extends lifespan of Drosophila melanogaster and Saccharomyces cerevisiae and this effect depends on the low amino acid status.

Lee BC, Kaya A, Ma S, Kim G, Gerashchenko MV, Yim SH, Hu Z, Harshman LG, Gladyshev VN (2013)

Nat Commun. 5, 3592.

Lifespan extension conferred by endoplasmic reticulum secretory pathway deficiency requires Induction of the unfolded protein response.

Labunskyy VM, Gerashchenko MV, Delaney JR, , Kennedy BK, Kaeberlein M, Gladyshev VN (2013)

PLoS Genetics 10, e1004019.

MsrB1 and MICALs regulate actin assembly and macrophage function via reversible stereoselective methionine oxidation.

Lee BC, Peterfi Z, Hoffmann FW, Moore RE, Kaya A, Avanesov A, Tarrago L, Zhou Y, Weerapana E, Fomenko DE, Hoffmann PR, Gladyshev VN (2013)

Mol Cell 51:397-404.

Diversity of plant methionine sulfoxide reductases B and evolution of a form specific for free methionine sulfoxide.

Le DT, Tarrago L, Watanabe Y, Kaya A, Lee BC, Tran U, Nishiyama R, Fomenko DE, Gladyshev VN, Tran LS (2013)

PLoS One 8, e65637.

Characterization of methionine oxidation and methionine sulfoxide reduction using methionine-rich cysteine-free proteins.

Liang X, Kaya A, Zhang Y, Le DT, Hua D, Gladyshev VN (2012)

BMC Biochem. 23, 13-21.

Methionine sulfoxide reductases preferentially reduce unfolded oxidized proteins and protect cells from oxidative protein unfolding.

Tarrago L, Kaya A, Weerapana E, Marino SM, Gladyshev VN (2012)

J. Biol. Chem. 287, 24448-24459.

Boron stress activates the general amino acid control mechanism and inhibits protein synthesis.

Uluisik I, Kaya A, Fomenko DE, Karakaya HC, Carlson BA, Gladyshev VN, Koc A (2011)

PLoS One 6, e27772.

A 4-selenocysteine, 2-selenocysteine insertion sequence (SECIS) element methionine sulfoxide reductase from Metridium senile reveals a non-catalytic function of selenocysteines.

Lee BC, Lobanov AV, Marino SM, Kaya A, Seravalli J, Hatfield DL, Gladyshev VN (2011)

J. Biol. Chem. 286, 18747-18755.

Thiol peroxidases mediate specific genome-wide regulation of gene expression in response to hydrogen peroxide.

Fomenko DE, Koc A, Agisheva N, Jacobsen M, Kaya A, Malinouski M, Rutherford JC, Siu KL, Jin DY, Winge DR, Gladyshev VN (2011)

Proc. Natl. Acad. Sci. USA 108, 2729-2734.

Genome-wide identification of genes that play a role in boron stress response in yeast.

Uluisik I, Kaya A, Unlu ES, Avsar K, Karakaya HC, Yalcin T, Koc A (2011)

Genomics 97, 106-111.

Compartmentalization and regulation of mitochondrial function by methionine sulfoxide reductases in yeast.

Kaya A, Koc A, Lee BC, Fomenko DE, Rederstorff M, Krol A, Lescure A, Gladyshev VN (2010)

Biochemistry 49, 8618-8625.

Diversity of protein and mRNA forms of mammalian methionine sulfoxide reductase B1 due to intronization and protein processing.

Liang X, Fomenko DE, Hua D, Kaya A, Gladyshev VN (2010)

PLoS One 5, e11497.

Identification of a novel system for boron transport: Atr1 is a main boron exporter in yeast.

Kaya A, Karakaya HC, Fomenko DE, Gladyshev VN, Koc A (2009)

Mol. Cell. Biol. 29, 3665-3674.

Functional analysis of free methionine-R-sulfoxide reductase from Saccharomyces cerevisiae.

Le DT, Lee BC, Marino SM, Zhang Y, Fomenko DE, Kaya A, Hacioglu E, Kwak GH, Koc A, Kim HY, Gladyshev VN (2009)

J. Biol. Chem. 284, 4354-4364.

bottom of page